Automatic Detection and Severity Estimation for Oral Cancer Speech

- Janay S.C. Monen¹, Bence M. Halpern^{3,4,5}, Teja Rebernik^{1,4}, Thomas Tienkamp¹, Rob J.J.H. van Son^{3,4}, Vass Verkhodanova¹, Max J.H. Witjes^{1,2} and Martijn Wieling¹ ¹University of Groningen, ²University Medical Center Groningen, ³University of Amsterdam, ⁴Netherlands Cancer Institute, ⁵Delft University of Technology
- janay.monen@mpi.nl

University of Groningen

Can classification-based machine learning methods detect oral cancer speech AND/OR estimate the severity of it?

1. Motivation

- There is very limited research on oral cancer (OC) speech severity estimation using machine learning (ML) methods [1–3], and even less on the automatic detection of OC speech [4].
- Given the social and functional impact of impaired speech, severity estimation is a crucial element of the OC post-treatment phase, i.e., it allows for speech monitoring.

• 0–60 points

- Detection can help identify OC speech characteristics that can be used for severity estimation.
- Implementing ML methods generates more robust and unbiased outcomes.

29

2

PT3

2. Oral cancer

Definition

A type of abnormal and excessive tissue growth on the lip or oral cavity.

<u>Main causes – etiological factors</u>

Tobacco consumption and alcohol abuse [5].

• Multilayer Perceptrons (MLP)

• 1D Convolutional Neural Networks (1D-CNN)

- OC and healthy speech (5 vs 5 speakers)

Incheon – 인천

Tasks: Detection and severity estimation

