Publications list

Journal papers

  1. Feng, S., Halpern, B. M., Kudina, O., & Scharenborg, O. (2023). Towards inclusive automatic speech recognition. Computer Speech & Language, 101567. Paper Pre-print
  2. Halpern, B. M., Feng, S., van Son, R., van den Brekel, M., & Scharenborg, O. (2023). Automatic evaluation of spontaneous oral cancer speech using ratings from naive listeners. Speech Communication, 149, 84-97. Paper
  3. Tienkamp, T. B., van Son, R. J., & Halpern, B. M. (2023). Objective speech outcomes after surgical treatment for oral cancer: An acoustic analysis of a spontaneous speech corpus containing 32.850 tokens. Journal of Communication Disorders, 101, 106292. Paper
  4. Halpern, B. M., Feng, S., van Son, R., van den Brekel, M., & Scharenborg, O. (2022). Low-resource automatic speech recognition and error analyses of oral cancer speech. Speech Communication, 141, 14-27. Paper

Conference proceedings

  1. Prananta, L., Halpern, B. M., Feng, S., & Scharenborg, O. E. (2022). The Effectiveness of Time Stretching for Enhancing Dysarthric Speech for Improved Dysarthric Speech Recognition. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH (Vol. 2022). Paper
  2. Zhang, Y., Zhang, Y., Halpern, B. M., Patel, T., & Scharenborg, O. (2022). Mitigating bias against non-native accents. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH (Vol. 2022, pp. 3168-3172). Paper
  3. Huang, W. C., Halpern, B. M., Violeta, L. P., Scharenborg, O., & Toda, T. (2022, May). Towards identity preserving normal to dysarthric voice conversion. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6672-6676). IEEE. Paper
  4. Illa, M., Halpern, B. M., van Son, R., Moro-Velázquez, L., & Scharenborg, O. E. (2021). Pathological voice adaptation with autoencoder-based voice conversion. In Proceedings of the 11th ISCA Speech Synthesis Workshop (SSW 11). ISCA. Paper
  5. Halpern, B. M., van Son, R., van den Brekel, M., & Scharenborg, O. (2020). Detecting and analysing spontaneous oral cancer speech in the wild Paper
  6. Halpern, B. M., Kelly, F., van Son12, R., & Alexander, A. (2020). Residual networks for resisting noise: analysis of an embeddings-based spoofing countermeasure. Paper
  7. Halpern, B.M., Fritsch, J., Hermann, E., van Son, R., Scharenborg, O., Doss, M.M. (2021) An Objective Evaluation Framework for Pathological Speech Synthesis. ITG Speech Communications Paper

Conference abstracts

  1. Halpern, B. M., Kelly, F. (2021). Speaker-informed speech separation and enhancement. Presented at IAFPA 2021. PPTX PDF
  2. Halpern, B. M., Kelly, F. (2022). Can DeepFake voices steal high-profile identities? Presented at IAFPA 2022. ABSTRACT POSTER
  3. Tienkamp, T., Rebernik, T., Halpern, B. M., van Son, R., de Viscscher, S. A., Witjes, M., Wieling, M. (2022). Quantifying changes in articulatory working space following oral cancer treatment using electromagnetic articulography. Presented at Speech Motor Control 2022.
  4. Rebernik, T., Halpern, B. M., Tienkamp, T., Jonkers, R., Noiray, A., van Son, R., van den Brekel, M., Witjes, M., Wieling, M. (2022). The effect of masking noise on oral cancer speech acoustics and kinematics. Presented at Speech Motor Control 2022. POSTER
  5. Monen, J. S. C., Halpern, B. M., Rebernik, T., Tienkamp, T., van Son, R., Verkhodanova, V., Witjes, M. J. H., Wieling, M. (2022). Automatic Detection and Severity Estimation for Oral Cancer Speech. Presented at Young Female Researchers Workshop 2022. POSTER
  6. Wildenburg, K., Halpern, B. M., Rebernik, T., Tienkamp, T., van Son, R., Verkhodanova, V., Witjes, M. J. H., Wieling, M. (2022). Automatic Speech Recognition and Error Analyses of Dutch Oral Cancer Speech. Presented at Young Female Researchers Workshop 2022. POSTER

Preprints

Halpern, B. M., Rebernik, T., Tienkamp, T., van Son, R., van den Brekel, M., Wieling, M., Witjes, M., & Scharenborg, O. (Date?). Manipulation of oral cancer speech using neural articulatory synthesis. Paper

Doctoral Thesis

Halpern, B. M. (2022). Making speech technology accessible for pathological speakers. University of Amsterdam. PhD Thesis Recording of the defense

Master’s Thesis

Halpern, B. M. (2018). Sparse Bayesian Regression for Identification of Gene Regulatory Networks. Imperial College London. Master’s Thesis

Papers where my contribution is acknowledged

  1. Tóth, R., Barth, A. M., Domonkos, A., Varga, V., & Somogyvári, Z. (Year?). Do not waste your electrodes – principles of optimal electrode geometry for spike sorting. Paper
  2. Kavoosi, A., Toth, R., Benjaber, M., Zamora, M., Valentın, A., Sharott, A., & Denison, T. (Year?). Computationally efficient neural network classifiers for next generation closed loop neuromodulation therapy – a case study in epilepsy. Paper